Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.552
Filtrar
1.
Cell Rep ; 43(4): 114017, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38578827

RESUMO

The relationship between sensory stimuli and perceptions is brain-state dependent: in wakefulness, suprathreshold stimuli evoke perceptions; under anesthesia, perceptions are abolished; and during dreaming and in dissociated states, percepts are internally generated. Here, we exploit this state dependence to identify brain activity associated with internally generated or stimulus-evoked perceptions. In awake mice, visual stimuli phase reset spontaneous cortical waves to elicit 3-6 Hz feedback traveling waves. These stimulus-evoked waves traverse the cortex and entrain visual and parietal neurons. Under anesthesia as well as during ketamine-induced dissociation, visual stimuli do not disrupt spontaneous waves. Uniquely, in the dissociated state, spontaneous waves traverse the cortex caudally and entrain visual and parietal neurons, akin to stimulus-evoked waves in wakefulness. Thus, coordinated neuronal assemblies orchestrated by traveling cortical waves emerge in states in which perception can manifest. The awake state is privileged in that this coordination is reliably elicited by external visual stimuli.


Assuntos
Neurônios , Vigília , Animais , Vigília/fisiologia , Camundongos , Neurônios/fisiologia , Alucinações/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Ketamina/farmacologia , Estimulação Luminosa , Ondas Encefálicas/fisiologia , Córtex Visual/fisiologia , Encéfalo/fisiologia
2.
BMC Neurosci ; 25(1): 21, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609841

RESUMO

The prevalence of electronic screens in modern society has significantly increased our exposure to high-energy blue and violet light wavelengths. Accumulating evidence links this exposure to adverse visual and cognitive effects and sleep disturbances. To mitigate these effects, the optical industry has introduced a variety of filtering glasses. However, the scientific validation of these glasses has often been based on subjective reports and a narrow range of objective measures, casting doubt on their true efficacy. In this study, we used electroencephalography (EEG) to record brain wave activity to evaluate the effects of glasses that filter multiple wavelengths (blue, violet, indigo, and green) on human brain activity. Our results demonstrate that wearing these multi-colour light filtering glasses significantly reduces beta wave power (13-30 Hz) compared to control or no glasses. Prior research has associated a reduction in beta power with the calming of heightened mental states, such as anxiety. As such, our results suggest that wearing glasses such as the ones used in this study may also positively change mental states, for instance, by promoting relaxation. This investigation is innovative in applying neuroimaging techniques to confirm that light-filtering glasses can induce measurable changes in brain activity.


Assuntos
Ondas Encefálicas , Humanos , Cor , Eletroencefalografia , Ansiedade , Emoções
3.
Sci Rep ; 14(1): 5252, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438453

RESUMO

Alzheimer's disease (AD) is a progressive disease leading to cognitive decline, and to prevent it, researchers seek to diagnose mild cognitive impairment (MCI) early. Particularly, non-amnestic MCI (naMCI) is often mistaken for normal aging as the representative symptom of AD, memory decline, is absent. Subjective cognitive decline (SCD), an intermediate step between normal aging and MCI, is crucial for prediction or early detection of MCI, which determines the presence of AD spectrum pathology. We developed a computer-based cognitive task to classify the presence or absence of AD pathology and stage within the AD spectrum, and attempted to perform multi-stage classification through electroencephalography (EEG) during resting and memory encoding state. The resting and memory-encoding states of 58 patients (20 with SCD, 10 with naMCI, 18 with aMCI, and 10 with AD) were measured and classified into four groups. We extracted features that could reflect the phase, spectral, and temporal characteristics of the resting and memory-encoding states. For the classification, we compared nine machine learning models and three deep learning models using Leave-one-subject-out strategy. Significant correlations were found between the existing neurophysiological test scores and performance of our computer-based cognitive task for all cognitive domains. In all models used, the memory-encoding states realized a higher classification performance than resting states. The best model for the 4-class classification was cKNN. The highest accuracy using resting state data was 67.24%, while it was 93.10% using memory encoding state data. This study involving participants with SCD, naMCI, aMCI, and AD focused on early Alzheimer's diagnosis. The research used EEG data during resting and memory encoding states to classify these groups, demonstrating the significance of cognitive process-related brain waves for diagnosis. The computer-based cognitive task introduced in the study offers a time-efficient alternative to traditional neuropsychological tests, showing a strong correlation with their results and serving as a valuable tool to assess cognitive impairment with reduced bias.


Assuntos
Doença de Alzheimer , Ondas Encefálicas , Humanos , Doença de Alzheimer/diagnóstico , Eletroencefalografia , Computadores , Testes Neuropsicológicos
4.
PLoS One ; 19(3): e0298384, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478472

RESUMO

Animal-assisted interventions are being increasingly used in studies that support various health effects. This study compared the psychophysiological and emotional responses during diverse activities with a dog to understand the impact of activity type. This study included 30 healthy adults (average age: 27.9 ± 8.4 years). Participants performed eight different activities with a dog for 3 minutes each. These activities included meeting, playing, feeding, massaging, grooming, photographing, hugging, and walking. Brain waves in the prefrontal, frontal, parietal, and occipital lobes were measured during the activities. Subjective evaluation of their emotions was recorded after each activity via the Profile of Mood States, Semantic Differential Method, and Stress Numeric Rating Scale. The alpha (relative, relative slow, relative fast) power spectra indicated that the brain's relaxation and resting state significantly increased when playing with and walking a dog. The beta (relative, relative low, and relative mid) power spectra significantly increased during dog massage, grooming, and playing activities, indicating improved concentration without stress. Notably, playing with a dog positively affected both relaxation and concentration. The Profile of Mood States outcome showed that activities such as feeding, massaging, and hugging the dog decreased the total mood disorder score, which indicated a positive effect on participants' moods. The Semantic Differential Method revealed that participants felt comfortable and natural while walking with a dog and relaxed when massaging it. Participants showed significantly lower stress moods in all the activities. This study demonstrated that specific dog activities could activate stronger relaxation, emotional stability, attention, concentration, and creativity by facilitating increased brain activity. In addition, interactions with dogs could decrease stress and induce positive emotional responses. These results provide data that forms the basis for the composition of the AAI program and may be applicable as a reference to determine the most effective activities for specific applications.


Assuntos
Ondas Encefálicas , Emoções , Adulto , Humanos , Cães , Animais , Adulto Jovem , Encéfalo , Afeto , Relaxamento
5.
J Neurosci ; 44(17)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38508712

RESUMO

The mammalian hippocampus exhibits spontaneous sharp wave events (1-30 Hz) with an often-present superimposed fast ripple oscillation (120-220 Hz) to form a sharp wave ripple (SWR) complex. During slow-wave sleep or quiet restfulness, SWRs result from the sequential spiking of hippocampal cell assemblies initially activated during learned or imagined experiences. Additional cortical/subcortical areas exhibit SWR events that are coupled to hippocampal SWRs, and studies in mammals suggest that coupling may be critical for the consolidation and recall of specific memories. In the present study, we have examined juvenile male and female zebrafish and show that SWR events are intrinsically generated and maintained within the telencephalon and that their hippocampal homolog, the anterodorsolateral lobe (ADL), exhibits SW events with ∼9% containing an embedded ripple (SWR). Single-cell calcium imaging coupled to local field potential recordings revealed that ∼10% of active cells in the dorsal telencephalon participate in any given SW event. Furthermore, fluctuations in cholinergic tone modulate SW events consistent with mammalian studies. Moreover, the basolateral amygdala (BLA) homolog exhibits SW events with ∼5% containing an embedded ripple. Computing the SW peak coincidence difference between the ADL and BLA showed bidirectional communication. Simultaneous coupling occurred more frequently within the same hemisphere, and in coupled events across hemispheres, the ADL more commonly preceded BLA. Together, these data suggest conserved mechanisms across species by which SW and SWR events are modulated, and memories may be transferred and consolidated through regional coupling.


Assuntos
Hipocampo , Peixe-Zebra , Animais , Masculino , Hipocampo/fisiologia , Feminino , Tonsila do Cerebelo/fisiologia , Potenciais de Ação/fisiologia , Ondas Encefálicas/fisiologia
6.
Science ; 383(6690): 1478-1483, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38547293

RESUMO

Experiences need to be tagged during learning for further consolidation. However, neurophysiological mechanisms that select experiences for lasting memory are not known. By combining large-scale neural recordings in mice with dimensionality reduction techniques, we observed that successive maze traversals were tracked by continuously drifting populations of neurons, providing neuronal signatures of both places visited and events encountered. When the brain state changed during reward consumption, sharp wave ripples (SPW-Rs) occurred on some trials, and their specific spike content decoded the trial blocks that surrounded them. During postexperience sleep, SPW-Rs continued to replay those trial blocks that were reactivated most frequently during waking SPW-Rs. Replay content of awake SPW-Rs may thus provide a neurophysiological tagging mechanism to select aspects of experience that are preserved and consolidated for future use.


Assuntos
Ondas Encefálicas , Região CA1 Hipocampal , Consolidação da Memória , Neurônios , Animais , Camundongos , Neurônios/fisiologia , Consolidação da Memória/fisiologia , Aprendizagem em Labirinto , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia
8.
Nature ; 628(8008): 590-595, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480889

RESUMO

Distinct brain and behavioural states are associated with organized neural population dynamics that are thought to serve specific cognitive functions1-3. Memory replay events, for example, occur during synchronous population events called sharp-wave ripples in the hippocampus while mice are in an 'offline' behavioural state, enabling cognitive mechanisms such as memory consolidation and planning4-11. But how does the brain re-engage with the external world during this behavioural state and permit access to current sensory information or promote new memory formation? Here we found that the hippocampal dentate spike, an understudied population event that frequently occurs between sharp-wave ripples12, may underlie such a mechanism. We show that dentate spikes are associated with distinctly elevated brain-wide firing rates, primarily observed in higher order networks, and couple to brief periods of arousal. Hippocampal place coding during dentate spikes aligns to the mouse's current spatial location, unlike the memory replay accompanying sharp-wave ripples. Furthermore, inhibiting neural activity during dentate spikes disrupts associative memory formation. Thus, dentate spikes represent a distinct brain state and support memory during non-locomotor behaviour, extending the repertoire of cognitive processes beyond the classical offline functions.


Assuntos
Ondas Encefálicas , Cognição , Hipocampo , Animais , Camundongos , Hipocampo/fisiologia , Consolidação da Memória/fisiologia , Nível de Alerta/fisiologia , Potenciais de Ação , Inibição Neural , Cognição/fisiologia , Ondas Encefálicas/fisiologia , Masculino , Feminino
10.
IEEE Trans Biomed Circuits Syst ; 18(2): 263-273, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408002

RESUMO

Advances in brain-machine interfaces and wearable biomedical sensors for healthcare and human-computer interactions call for precision electrophysiology to resolve a variety of biopotential signals across the body that cover a wide range of frequencies, from the mHz-range electrogastrogram (EGG) to the kHz-range electroneurogram (ENG). Existing integrated wearable solutions for minimally invasive biopotential recordings are limited in detection range and accuracy due to trade-offs in bandwidth, noise, input impedance, and power consumption. This article presents a 16-channel wide-band ultra-low-noise neural recording system-on-chip (SoC) fabricated in 65nm CMOS for chronic use in mobile healthcare settings that spans a bandwidth of 0.001 Hz to 1 kHz through a featured sample-level duty-cycling (SLDC) mode. Each recording channel is implemented by a delta-sigma analog-to-digital converter (ADC) achieving 1.0 µ V rms input-referred noise over 1Hz-1kHz bandwidth with a Noise Efficiency Factor (NEF) of 2.93 in continuous operation mode. In SLDC mode, the power supply is duty-cycled while maintaining consistently low input-referred noise levels at ultra-low frequencies (1.1 µV rms over 0.001Hz-1Hz) and 435 M Ω input impedance. The functionalities of the proposed SoC are validated with two human electrophysiology applications: recording low-amplitude electroencephalogram (EEG) through electrodes fixated on the forehead to monitor brain waves, and ultra-slow-wave electrogastrogram (EGG) through electrodes fixated on the abdomen to monitor digestion.


Assuntos
Ondas Encefálicas , Eletroencefalografia , Humanos , Desenho de Equipamento , Eletrodos , Impedância Elétrica , Amplificadores Eletrônicos
11.
Epilepsy Behav ; 152: 109659, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301454

RESUMO

Depression is prevalent in epilepsy patients and their intracranial brain activity recordings can be used to determine the types of brain activity that are associated with comorbid depression. We performed case-control comparison of spectral power and phase amplitude coupling (PAC) in 34 invasively monitored drug resistant epilepsy patients' brain recordings. The values of spectral power and PAC for one-minute segments out of every hour in a patient's study were correlated with pre-operative assessment of depressive symptoms by Beck Depression Inventory-II (BDI). We identified an elevated PAC signal (theta-alpha-beta phase (5-25 Hz)/gamma frequency (80-100 Hz) band) that is present in high BDI scores but not low BDI scores adult epilepsy patients in brain regions implicated in primary depression, including anterior cingulate cortex, amygdala and orbitofrontal cortex. Our results showed the application of PAC as a network-specific, electrophysiologic biomarker candidate for comorbid depression and its potential as treatment target for neuromodulation.


Assuntos
Ondas Encefálicas , Epilepsia , Adulto , Humanos , Depressão/diagnóstico , Depressão/etiologia , Epilepsia/complicações , Epilepsia/diagnóstico , Encéfalo , Ondas Encefálicas/fisiologia , Córtex Pré-Frontal , Eletroencefalografia
12.
Hum Brain Mapp ; 45(2): e26572, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339905

RESUMO

Tau rhythms are largely defined by sound responsive alpha band (~8-13 Hz) oscillations generated largely within auditory areas of the superior temporal gyri. Studies of tau have mostly employed magnetoencephalography or intracranial recording because of tau's elusiveness in the electroencephalogram. Here, we demonstrate that independent component analysis (ICA) decomposition can be an effective way to identify tau sources and study tau source activities in EEG recordings. Subjects (N = 18) were passively exposed to complex acoustic stimuli while the EEG was recorded from 68 electrodes across the scalp. Subjects' data were split into 60 parallel processing pipelines entailing use of five levels of high-pass filtering (passbands of 0.1, 0.5, 1, 2, and 4 Hz), three levels of low-pass filtering (25, 50, and 100 Hz), and four different ICA algorithms (fastICA, infomax, adaptive mixture ICA [AMICA], and multi-model AMICA [mAMICA]). Tau-related independent component (IC) processes were identified from this data as being localized near the superior temporal gyri with a spectral peak in the 8-13 Hz alpha band. These "tau ICs" showed alpha suppression during sound presentations that was not seen for other commonly observed IC clusters with spectral peaks in the alpha range (e.g., those associated with somatomotor mu, and parietal or occipital alpha). The choice of analysis parameters impacted the likelihood of obtaining tau ICs from an ICA decomposition. Lower cutoff frequencies for high-pass filtering resulted in significantly fewer subjects showing a tau IC than more aggressive high-pass filtering. Decomposition using the fastICA algorithm performed the poorest in this regard, while mAMICA performed best. The best combination of filters and ICA model choice was able to identify at least one tau IC in the data of ~94% of the sample. Altogether, the data reveal close similarities between tau EEG IC dynamics and tau dynamics observed in MEG and intracranial data. Use of relatively aggressive high-pass filters and mAMICA decomposition should allow researchers to identify and characterize tau rhythms in a majority of their subjects. We believe adopting the ICA decomposition approach to EEG analysis can increase the rate and range of discoveries related to auditory responsive tau rhythms.


Assuntos
Córtex Auditivo , Ondas Encefálicas , Humanos , Algoritmos , Córtex Auditivo/fisiologia , Magnetoencefalografia
13.
Nature ; 627(8002): 157-164, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418877

RESUMO

The accumulation of metabolic waste is a leading cause of numerous neurological disorders, yet we still have only limited knowledge of how the brain performs self-cleansing. Here we demonstrate that neural networks synchronize individual action potentials to create large-amplitude, rhythmic and self-perpetuating ionic waves in the interstitial fluid of the brain. These waves are a plausible mechanism to explain the correlated potentiation of the glymphatic flow1,2 through the brain parenchyma. Chemogenetic flattening of these high-energy ionic waves largely impeded cerebrospinal fluid infiltration into and clearance of molecules from the brain parenchyma. Notably, synthesized waves generated through transcranial optogenetic stimulation substantially potentiated cerebrospinal fluid-to-interstitial fluid perfusion. Our study demonstrates that neurons serve as master organizers for brain clearance. This fundamental principle introduces a new theoretical framework for the functioning of macroscopic brain waves.


Assuntos
Encéfalo , Líquido Cefalorraquidiano , Líquido Extracelular , Neurônios , Potenciais de Ação , Encéfalo/citologia , Encéfalo/metabolismo , Ondas Encefálicas/fisiologia , Líquido Cefalorraquidiano/metabolismo , Líquido Extracelular/metabolismo , Sistema Glinfático/metabolismo , Cinética , Rede Nervosa/fisiologia , Neurônios/metabolismo , Optogenética , Tecido Parenquimatoso/metabolismo , Íons/metabolismo
14.
Sensors (Basel) ; 24(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38400241

RESUMO

BACKGROUND: There is a significant need to monitor human cognitive performance in complex environments, with one example being pilot performance. However, existing assessments largely focus on subjective experiences (e.g., questionnaires) and the evaluation of behavior (e.g., aircraft handling) as surrogates for cognition or utilize brainwave measures which require artificial setups (e.g., simultaneous auditory stimuli) that intrude on the primary tasks. Blink-related oscillations (BROs) are a recently discovered neural phenomenon associated with spontaneous blinking that can be captured without artificial setups and are also modulated by cognitive loading and the external sensory environment-making them ideal for brain function assessment within complex operational settings. METHODS: Electroencephalography (EEG) data were recorded from eight adult participants (five F, M = 21.1 years) while they completed the Multi-Attribute Task Battery under three different cognitive loading conditions. BRO responses in time and frequency domains were derived from the EEG data, and comparisons of BRO responses across cognitive loading conditions were undertaken. Simultaneously, assessments of blink behavior were also undertaken. RESULTS: Blink behavior assessments revealed decreasing blink rate with increasing cognitive load (p < 0.001). Prototypical BRO responses were successfully captured in all participants (p < 0.001). BRO responses reflected differences in task-induced cognitive loading in both time and frequency domains (p < 0.05). Additionally, reduced pre-blink theta band desynchronization with increasing cognitive load was also observed (p < 0.05). CONCLUSION: This study confirms the ability of BRO responses to capture cognitive loading effects as well as preparatory pre-blink cognitive processes in anticipation of the upcoming blink during a complex multitasking situation. These successful results suggest that blink-related neural processing could be a potential avenue for cognitive state evaluation in operational settings-both specialized environments such as cockpits, space exploration, military units, etc. and everyday situations such as driving, athletics, human-machine interactions, etc.-where human cognition needs to be seamlessly monitored and optimized.


Assuntos
Piscadela , Ondas Encefálicas , Adulto , Humanos , Cognição/fisiologia , Eletroencefalografia/métodos , Ondas Encefálicas/fisiologia , Encéfalo/fisiologia
15.
Sci Adv ; 10(8): eadk3198, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38394205

RESUMO

Achieving long-lasting neuronal modulation with low-intensity, low-frequency ultrasound is challenging. Here, we devised theta burst ultrasound stimulation (TBUS) with gamma bursts for brain entrainment and modulation of neuronal plasticity in the mouse motor cortex. We demonstrate that two types of TBUS, intermittent and continuous TBUS, induce bidirectional long-term potentiation or depression-like plasticity, respectively, as evidenced by changes in motor-evoked potentials. These effects depended on molecular pathways associated with long-term plasticity, including N-methyl-d-aspartate receptor and brain-derived neurotrophic factor/tropomyosin receptor kinase B activation, as well as de novo protein synthesis. Notably, bestrophin-1 and transient receptor potential ankyrin 1 play important roles in these enduring effects. Moreover, pretraining TBUS enhances the acquisition of previously unidentified motor skills. Our study unveils a promising protocol for ultrasound neuromodulation, enabling noninvasive and sustained modulation of brain function.


Assuntos
Ondas Encefálicas , Plasticidade Neuronal , Animais , Camundongos , Plasticidade Neuronal/fisiologia , Potenciação de Longa Duração/fisiologia , Potencial Evocado Motor/fisiologia , Neurônios
16.
Cell Rep Methods ; 4(1): 100681, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38183979

RESUMO

Neuroscience is moving toward a more integrative discipline where understanding brain function requires consolidating the accumulated evidence seen across experiments, species, and measurement techniques. A remaining challenge on that path is integrating such heterogeneous data into analysis workflows such that consistent and comparable conclusions can be distilled as an experimental basis for models and theories. Here, we propose a solution in the context of slow-wave activity (<1 Hz), which occurs during unconscious brain states like sleep and general anesthesia and is observed across diverse experimental approaches. We address the issue of integrating and comparing heterogeneous data by conceptualizing a general pipeline design that is adaptable to a variety of inputs and applications. Furthermore, we present the Collaborative Brain Wave Analysis Pipeline (Cobrawap) as a concrete, reusable software implementation to perform broad, detailed, and rigorous comparisons of slow-wave characteristics across multiple, openly available electrocorticography (ECoG) and calcium imaging datasets.


Assuntos
Ondas Encefálicas , Software , Encéfalo , Sono , Mapeamento Encefálico/métodos
17.
J Laryngol Otol ; 138(3): 301-309, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37259908

RESUMO

OBJECTIVE: The aim of this study was to identify the potential electrophysiological biomarkers of human responses by comparing the electroencephalogram brain wave changes towards lavender versus normal saline in a healthy human population. METHOD: This study included a total of 44 participants without subjective olfactory disturbances. Lavender and normal saline were used as the olfactory stimulant and control. Electroencephalogram was recorded and power spectra were analysed by the spectral analysis for each alpha, beta, delta, theta and gamma bandwidth frequency upon exposure to lavender and normal saline independently. RESULTS: The oscillatory brain activities in response to the olfactory stimulant indicated that the lavender smell decreased the beta activity in the left frontal (F7 electrode) and central region (C3 electrode) with a reduction in the gamma activity in the right parietal region (P4 electrode) (p < 0.05). CONCLUSION: Olfactory stimulants result in changes of electrical brain activities in different brain regions, as evidenced by the topographical brain map and spectra analysis of each brain wave.


Assuntos
Ondas Encefálicas , Solução Salina , Humanos , Odorantes , Eletroencefalografia , Olfato/fisiologia , Encéfalo
18.
Epilepsia ; 65(2): 362-377, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38041560

RESUMO

OBJECTIVE: To confirm and investigate why pathological high-frequency oscillations (pHFOs), including ripples (80-200 Hz) and fast ripples (200-600 Hz), are generated during the UP-DOWN transition of the slow wave and if information transmission mediated by ripple temporal coupling is disrupted in the seizure-onset zone (SOZ). METHODS: We isolated 217 total units from 175.95 intracranial electroencephalography (iEEG) contact-hours of synchronized macro- and microelectrode recordings from 6 patients. Sleep slow oscillation (.1-2 Hz) epochs were identified in the iEEG recording. iEEG HFOs that occurred superimposed on the slow wave were transformed to phasors and adjusted by the phase of maximum firing in nearby units (i.e., maximum UP). We tested whether, in the SOZ, HFOs and associated action potentials (APs) occur more often at the UP-DOWN transition. We also examined ripple temporal correlations using cross-correlograms. RESULTS: At the group level in the SOZ, HFO and HFO-associated AP probability was highest during the UP-DOWN transition of slow wave excitability (p < < .001). In the non-SOZ, HFO and HFO-associated AP was highest during the DOWN-UP transition (p < < .001). At the unit level in the SOZ, 15.6% and 20% of units exhibited more robust firing during ripples (Cohen's d = .11-.83) and fast ripples (d = .36-.90) at the UP-DOWN transition (p < .05 f.d.r. corrected), respectively. By comparison, also in the SOZ, 6.6% (d = .14-.30) and 8.5% (d = .33-.41) of units had significantly less firing during ripples and fast ripples at the UP-DOWN transition, respectively. Additional data shows that ripple and fast ripple temporal correlations, involving global slow waves, between the hippocampus, entorhinal cortex, and parahippocampal gyrus were reduced by >50% in the SOZ compared to the non-SOZ (N = 3). SIGNIFICANCE: The UP-DOWN transition of slow wave excitability facilitates the activation of pathological neurons to generate pHFOs. Ripple temporal correlations across brain regions may be important in memory consolidation and are disrupted in the SOZ, perhaps by pHFO generation.


Assuntos
Ondas Encefálicas , Eletrocorticografia , Humanos , Encéfalo , Sono/fisiologia , Ondas Encefálicas/fisiologia , Giro Para-Hipocampal , Eletroencefalografia
19.
Sci Rep ; 13(1): 21758, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066035

RESUMO

The interaction between biological tissue and electromagnetic fields (EMF) is a topic of increasing interest due to the rising prevalence of background EMF in the past decades. Previous studies have attempted to measure the effects of EMF on brainwaves using EEG recordings, but are typically hampered by experimental and environmental factors. In this study, we present a framework for measuring the impact of EMF on EEG while controlling for these factors. A Bayesian statistical approach is employed to provide robust statistical evidence of the observed EMF effects. This study included 32 healthy participants in a double-blinded crossover counterbalanced design. EEG recordings were taken from 63 electrodes across 6 brain regions. Participants underwent a measurement protocol comprising two 18-min sessions with alternating blocks of eyes open (EO) and eyes closed (EC) conditions. Group 1 (n = 16) had EMF during the first session and sham during the second session; group 2 (n = 16) had the opposite. Power spectral density plots were generated for all sessions and brain regions. The Bayesian analysis provided statistical evidence for the presence of an EMF effect in the alpha band power density in the EO condition. This measurement protocol holds potential for future research on the impact of novel transmission protocols.


Assuntos
Ondas Encefálicas , Telefone Celular , Humanos , Campos Eletromagnéticos/efeitos adversos , Voluntários Saudáveis , Teorema de Bayes , Ondas de Rádio
20.
Artigo em Inglês | MEDLINE | ID: mdl-38083732

RESUMO

There is increasing evidence that the effects of non-invasive brain stimulation can be maximized when the applied intervention matches internal brain oscillations. Extracting individual brain oscillations is thus a necessary step for implementing personalized brain stimulation. In this context, different methods have been proposed for obtaining subject-specific spectral peaks from electrophysiological recordings. However, comparing the results obtained using different approaches is still lacking. Therefore, in the present work, we examined the following methodologies in terms of obtaining individual motor-related EEG spectral peaks: fast Fourier Transform analysis, power spectrum density analysis, wavelet analysis, and a principal component based time-frequency analysis. We used EEG data obtained when performing two different motor tasks - a hand grip task and a hand opening- and-closing task. Our results showed that both the motor task type and the specific method for performing the analysis had considerable impact on the extraction of subject-specific oscillation spectral peaks.Clinical Relevance-This exploratory study provides insights into the potential effects of using different methods to extract individual brain oscillations, which is important for designing personalized brain-machine-interfaces.


Assuntos
Ondas Encefálicas , Eletroencefalografia , Eletroencefalografia/métodos , Força da Mão , Encéfalo/fisiologia , Ondas Encefálicas/fisiologia , Mapeamento Encefálico/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...